Subscribe to our free daily newsletters
  Saturn News  

Subscribe to our free daily newsletters

Discovering the bath scum on Titan
by Helen Maynard-Casely for The Conversation
Melbourne, Australia (The Conversation) Apr 29, 2016

Titan's Ligeia Mare in false color. Image courtesy NASA/JPL-Caltech/ASI/Cornell.

It's not everyday that you get to discover something new. But when you do it is a rather strange and quite brilliant feeling. You don't really cry out 'Eureka' (there's usually about a million things going about it your head pointing out how it could be wrong). When you finally conquer the 'wrong' demon and satisfy yourself that you have something new, well then you usually sit back in your chair and smile to yourself.

Maybe at a push grab a cup of coffee and a celebratory chocolate bar from the vending machine. That's pretty much how I felt when I worked out the latest crystal structure I've just published, of the 'bath scum' of Titan. The great thing about this column space is that I can use it to tell you all the back-story behind a paper, how it came about and why I think it's really exciting.

Titan, the largest moon of Saturn, is in many ways pretty similar to Earth. It's the only moon in the solar system with a substantial atmosphere, much thicker than our own. If you don't mind the cold and lack of oxygen, moving about the surface there will feel a bit like walking under water. It's pretty nice when you consider that the atmosphere most other planets and moons will barely shield you from the vacuum of space.

The other similarity with our own home is that Titan has liquid on the surface, vast lakes and seas. It's the only other place we know where you can watch the sun set into a sea (albeit very very slowly). But, where our seas are composed of water, the seas and lakes of Titan are filled with methane and ethane, which are liquid at the frigid temperatures on the surface (around -180 C). And in fact, the Cassini spacecraft and the team of scientists behind it, have gone further than just the discovery of standing liquid - they have shown that Titan has a kind of hydrological cycle.

Similar to our own on earth, with the liquid evaporating, then clouds forming and rain falling, except this liquid is methane. But there was a missing link in this cycle, there are features that look a lot like the scum left behind after a nice long hot bath - what is this stuff?

You see, Cassini has also spotted dried lakes - full of material that is different to the surrounding terrain. Again this is like something we see on Earth - you only have to look out the plane when you fly across the Australian red centre. On Earth we know what materials fill these lakes, they are salts and hydrates - materials with water trapped in their structure. But what are they on Titan? What scum gets left behind when the lakes of Titan evaporate?

The planetary ices group at NASA's Jet Propulsion laboratory were on the case. Along with liquid methane and ethane, there is a long list of solid materials that could be littering the surface of Titan. Evidence for these comes from three sources - models predicting the fallout from the atmosphere, the small windows of reflected light that make it through the thick Titan atmosphere and the was the radar from Cassini interacts with the surface.

But we do also have one slightly more direct indication of surface composition, from the Huygens lander, which Cassini dispatched in 2005 to land. It sampled the atmosphere as it went down, showing peaks and troughs in concentrations of various small organic chemicals. On the surface it particularly noted a spike in benzene (a small ring organic material).

So, armed with this list of possible chemicals, the planetary ices group started picking pairs and mixing them up with methane and ethane at the chilly temperature of Titan. Any material that would form a solid with the two liquid materials in the seas would be a great candidate for the scum their colleagues had seen about the lakes. One particular result got them excited, they had evidence that ethane combined with benzene, at the chilly temperatures of Titan.

However, the evidence they had (from spectroscopy and from seeing it change under the microscope) wasn't enough to work out exactly what this new materials was - what was the proportion of benzene to ethane? How did the benzene and ethane molecules stick together to make a new material? What is the density of this new material? This last question was pretty key, as the 'magic island' had surfaced within one of Titan's lakes - could the island be made of this material?

Now, to answer these questions the group were in search of a friendly crystallographer, who could help answer some of these questions. Luckily for me, I happened to coincide at a conference with them - presenting my results on some structures of sulfuric acid hydrates I had worked out. They approached me after my talk and asked if I could help them with this material (and what idiot would turn down the opportunity to work with a group from NASA?).

The task then was to recreate the conditions of Titan for the benzene and ethane molecules, while firing a high-energy X-ray beam at them. Not particularly trivial, but after a lot of preparation we were about to undertake the experiment and collected some beautiful data at the Australian Synchrotron. So beautiful, I was able to tell straight away that this material was definitely new. And with a bit of help from a theorist, we were able to cement down the structure.

We found that the material, it's been named a benzene:ethane co-crystal, is too dense to be the reason that Titan's magic island pops up - but it is a remarkable structure. The benzene molecules form a channel, and the ethane molecules which are more elongated sit down these channels. You can read loads more about the structure in the paper published online - it's open access. The structure is particularly interesting as you can see how the ethane might pop in and out of the structure. And this raises the thought, could other, similar shaped molecules, also sit in the channels?

So now we're on the hunt for more of Titan's materials, many of the chemicals spotted on the surface and in the atmosphere of this moon are gases and liquids to us on Earth - we generally haven't considered what they are like as solids. That's a shame, because Cassini has revealed the landscape of Titan to be very varied. Without knowing what all these materials are we won't be able to understand all the landforms we've spotted.

Well, I say a shame, but it should keep me furnished with interesting experiments for the next 20 years or so!

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
Australian Nuclear Science and Technology Organisation
Explore The Ring World of Saturn and her moons
Jupiter and its Moons
The million outer planets of a star called Sol
News Flash at Mercury

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
Profile of a methane sea on Titan
Paris (ESA) Apr 28, 2016
Saturn's largest moon is covered in seas and lakes of liquid hydrocarbons - and one sea has now been found to be filled with pure methane, with a seabed covered by a sludge of organic-rich material, and possibly surrounded by wetlands. Of all the moons in the Solar System, Titan is the only one with a thick atmosphere and large liquid reservoirs on its surface - in some ways making it more ... read more

Mars' surface revealed in unprecedented detail

NASA rocket fuel pump tests pave way for methane-fueled Mars lander

Opportunity completes mini-walkabout

Curiosity Mars Rover crosses rugged plateau

First rocket made ready for launch at Vostochny spaceport

Supernova iron found on the moon

Russia to shift all Lunar launches to Vostochny Cosmodrome

Lunar lava tubes could help pave way for human colony

Profile of a methane sea on Titan

Y Marks the Spot

Saturn Spacecraft Samples Interstellar Dust

Saturn spacecraft not affected by hypothetical Planet 9

China can meet Chile's satellite needs: ambassador

South China city gears up for satellite tourism

China targets 2020 Mars mission launch: official

China testing own reusable rocket technologies

Pluto's 'Halo' Craters

Pluto's haze varies in brightness

Icy 'Spider' on Pluto

Planet X takes shape

Kepler spacecraft recovered and returned to the K2 Mission

Lone planetary-mass object found in family of stars

University of Massachusetts Lowell PICTURE-B Mission Completed

Stars strip away atmospheres of nearby super-Earths

Could Earth's light blue color be a signature of life?

Hydrothermal systems show spectrum of extreme life on Earth

In these microbes, iron works like oxygen

Sorting the wheat from the chaff

Sentinel-1B launched to complete radar pair

Satellite data latest tool in Indonesia's fight against illegal fishing

China's Earth observation satellite assists Ecuador quake relief

Sentinel-1 counts fish

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement