Subscribe free to our newsletters via your
  Saturn News  




Subscribe free to our newsletters via your




















The Giant Sponge Of Saturn

Enceladus is seen here as a white disk across the unilluminated side of Saturn's rings (black and white stripes across the bottom of the image). This image was taken with the Cassini spacecraft narrow-angle camera on Oct. 27, 2007. Credit: NASA/JPL/Space Science Institute
by Staff Writers
Pasadena CA (JPL) Feb 06, 2008
One of Saturn's rings does housecleaning, soaking up material gushing from the fountains on Saturn's tiny ice moon Enceladus, according to new observations from the Cassini spacecraft. "Saturn's A-ring and Enceladus are separated by 100,000 kilometers (62,000 miles), yet there's a physical connection between the two," says Dr. William Farrell of NASA's Goddard Space Flight Center in Greenbelt, Md.

"Prior to Cassini, it was believed that the two bodies were separate and distinct entities, but Cassini's unique observations indicate that Enceladus is actually delivering a portion of its mass directly to the outer edge of the A-ring." Farrell is lead author of a paper on this discovery that appeared in Geophysical Research Letters January 23.

This is the latest surprising phenomenon associated with the ice geysers of Enceladus to be discovered or confirmed by Cassini scientists. Earlier, the geysers were found to be responsible for the content of the E-ring. Next, the whole magnetic environment of Saturn was found to be weighed down by the material spewing from Enceladus, which becomes plasma -- a gas of electrically charged particles.

Now, Cassini scientists confirm that the plasma, which creates a donut-shaped cloud around Saturn, is being snatched by Saturn's A-ring, which acts like a giant sponge where the plasma is absorbed.

Shot from Enceladus' interior, the gas particles become electrically charged (ionized) by sunlight and collisions with other atoms and electrons. Once electrically charged, the particles feel magnetic force and are swept into the space around Saturn dominated by the planet's powerful magnetic field. There, they are trapped by Saturn's magnetic field lines, bouncing back and forth from pole-to-pole.

The fun ends, however, if their bouncing path carries them inward toward Saturn to the A-ring. There they stick, in essence becoming part of the ring. "Once they get to the outer A-ring, they are stuck," says Farrell.

"This is an example of how Saturn's rings mitigate the overall radiation environment around the planet, sponging up low- and high-energy particles," says Farrell. By contrast, Jupiter has no dense rings to soak up high-energy particles, so that planet's extremely high radiation environment persists.

The Cassini observations confirm a prediction by Dr. John Richardson and Dr. Slobodan Jurac of the Massachusetts Institute of Technology. In the early 1990's, Hubble Space Telescope observations revealed the presence of a large body of water-related molecules in orbit about 240,000 km (almost 150,000 miles) from the planet.

Richardson and Jurac modeled this water cloud and demonstrated it could migrate inward to the A-ring. "We relied on their predictions to help us interpret our data," said Farrell. "They predicted it, and we were seeing it."

At the time of their prediction, the source of the water cloud was unknown. The source was not identified until 2005 when Cassini discovered the stunning geysers emitted from Enceladus.

Data for the discovery that Saturn's A-ring acts like a sponge were collected in July 2004 when Cassini arrived in orbit around Saturn, making its closest flyby over the A-ring. "We skimmed over the top of that ring fairly close," said Farrell.

Hot spots on the inside wall of the plasma donut -- the part colliding with the A-ring -- were emitting radio signals. These signals behaved as a sort of natural radio beacon, indicating the local plasma density at the inner edge of the donut.

The signals were detected by Cassini's Radio and Plasma Wave instrument. The team used these signals to monitor the density of the plasma (the higher the frequency, the greater the density) and hence witness the change in gas density with time.

"As we approached the A-ring, the frequency dropped, implying that the plasma density was going down because it was being absorbed by the ring," said Farrell. "What really drove this home was what happened to the signal when we passed over a gap in the rings, called the Cassini division. There, the frequency went higher, implying that the plasma density was going up because plasma was leaking through the gap."

Related Links
Explore The Ring World of Saturn and her moons
Jupiter and its Moons
The million outer planets of a star called Sol
News Flash at Mercury



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Oscillations found in Saturn's rings
Stanford, Calif. (UPI) Jan 16, 2008
U.S. scientists have found evidence of periodic variation in the density of particles in some of Saturn's outer rings.







  • ASU Research Solves Solar System Quandary
  • Happy Second Birthday New Horizons
  • The PI's Perspective: Autumn 2007: Onward to the Kuiper Belt
  • Data For The Next Generations

  • NASA Budget Request Strong On Earth Weak On Mars
  • ESA Presents Mars In 3D
  • Mars In Their Sights
  • Lyell Panorama Inside Victoria Crater Mars Four Years On Mars

  • VIRTIS Observations Of Venusian Lower Atmosphere
  • The Restless Atmosphere Of Venus
  • The Unexpected Temperature Profile Of Venus's Atmosphere
  • The Venusian Climate And Its Evolution

  • Surprises From Mercury
  • Mercury Magnetosphere Fends Off The Solar Wind
  • Surprises Stream Back From Mercury's Messenger
  • NASA unveils images of Mercury overflight

  • Venus And Jupiter Converge
  • Monster Storms Erupt On Jupiter
  • The Storms May Tell Why Gas Giant Planets Are So Windy
  • The Mystery Of Jupiter's Jets Uncovered

  • Life On Frosted Earths
  • Weird Object May Be Result Of Colliding Protoplanets
  • Two Unusual Older Stars Giving Birth To Second Wave Of Planets
  • Search For New Planets Part Of Ambitious New Sky Survey

  • Volcanic deposits may aid lunar outposts
  • NG-Built Antennas Helping Provide Data On Moon's Thermal History For Japan's KAGUYA (SELENE) Mission
  • Amateur Radio Operators Asked To Tune Into Lunar Radar Bounce
  • With Moon Dirt In Demand, Geoscientist's Business Is Booming

  • Indonesia To Develop New EO Satellite
  • Russia To Launch Space Project To Monitor The Arctic In 2010
  • New Radar Satellite Technique Sheds Light On Ocean Current Dynamics
  • SPACEHAB Subsidiary Wins NASA Orbiting Carbon Observatory Contract

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement