Subscribe free to our newsletters via your
  Saturn News  




Subscribe free to our newsletters via your




















The Jet Stream Of Titan

This artist's impression shows the 'light curve' produced by a star passing behind Titan, Saturn's biggest moon. When such occultation events take place, the light from the star is blocked out. Because Titan has a thick atmosphere, the light does not 'turn off' straight away. Instead, it drops gradually as the blankets of atmosphere slide in front of the star, as the light-curve drawn here shows. The way the light drops tells astronomers about the atmosphere of Titan. The peak at the centre of the light curve represents the bright flash occurring at the very middle of the occultation. This is due to the fact that Titan's atmosphere acts as a lens, making the light emitted by the star passing behind converge into a focal point and produce the flash. Credits: ESA. Image by C.Carreau. For a video that further illustrates this process please go here.
by Staff Writers
Paris, France (ESA) Jan 25, 2007
A pair of rare celestial alignments that occurred in November 2003 helped an international team of astronomers investigate the far-off world of Titan. In particular, the alignments helped validate the atmospheric model used to design the entry trajectory for ESA's Huygens probe. Now the unique results are helping to place the descent of Huygens in a global context, and to investigate the upper layers of Titan's atmosphere.

Occasionally Titan passes directly in front of a distant star. When it does so, the light from the star is blocked out. Because Titan has a thick atmosphere, the light does not 'turn off' straight away. Instead, it drops gradually as the blankets of atmosphere slide in front of the star. The way the light drops tells astronomers about the atmosphere of Titan.

By pure chance on 14 November 2003, fourteen months before Huygens' historic descent through Titan's atmosphere, Titan passed in front of two stars, just seven and a half hours apart. Bruno Sicardy, Observatoire de Paris, France, organised expeditions to record the occultations, as such events are called.

The first occultation was visible just after midnight from the Indian Ocean and the southern half of Africa. The second could be seen from Western Europe, the Atlantic Ocean, Northern and Central Americas. Teams of astronomers set up along the occultation tracks.

Sicardy was looking for one observation in particular. "Titan's atmosphere acts like a lens, so at the very middle of the occultation, a bright flash occurs," explains Sicardy. If Titan's atmosphere were a perfectly uniform layer, the central flash would be a pinprick of light, visible only at the very centre of the planet's shadow. However, comparing the results from many telescopes, Sicardy found that the central flash fell across the Earth in a triangular shape.

"It is like the light falling through a glass of water and making bright patterns on the table. The focused light is not perfectly round because the glass is not a perfect lens," says Sicardy. Analysing the shape of the flash showed that Titan's atmosphere was flattened at the north pole. This was because at the time of the occultation, Titan's south pole was tilted towards the Sun. This warmed the atmosphere there, causing it to rise and move towards the north of the moon, where the atmosphere cooled and sank towards the surface.

There was one other key discovery that the occultation data allowed Sicardy and his team to make. A fast moving, high altitude wind (above 200 kilometres) was blowing around Titan at latitude of 50 degrees north. They estimated that it was moving at 200 metres per second (or 720 kilometres per hour) and would encircle the planet in less than one terrestrial day.

"It is like the jet stream on Earth," says Sicardy, "Furthermore, we told the Huygens team to expect some bumps near 510 kilometres altitude, due to a narrow and sudden temperature variation." Indeed, Huygens was jolted by exactly such a layer during its 14 January 2005 entry. "A temperature inversion was indeed detected by the accelerometers during entry at this very altitude" says Jean-Pierre Lebreton, Huygens project scientist.

The work does not stop there. Even though the Huygens descent took place almost two years ago, the understanding of its data continues to provide key insights into Titan.

The findings appear in the article "The two Titan stellar occultations of 14 November 2003", by Bruno Sicardy et al., published in Journal of Geophysical Research (Vol. 111, E11S91, doi:10.1029/2005JE002624, 2006).

Related Links
Cassini at JPL
Cassini images
Explore The Ring World of Saturn and her moons
Explore The Ring World of Saturn and her moons
Jupiter and its Moons
The million outer planets of a star called Sol
News Flash at Mercury



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Map Of Titan With Labels
Pasadena CA (SPX) Jan 17, 2007
This global digital map of Titan was created using data taken by the Cassini spacecraft Imaging Science Subsystem (ISS). The data here consist of images taken using a filter centered at 938 nanometers, allowing researchers to examine albedo (or inherent brightness) variations across the surface of Titan.







  • One Year Down, Eight to Go, On The Road to Pluto
  • NASA Spacecraft En Route To Pluto Prepares For Jupiter Encounter
  • Jupiter Encounter Begins For New Horizons Spacecraft On Route To Pluto
  • New Horizons in 2007

  • HiRise Camera Shows Mojave Crater Peak Is High And Dry
  • A Stellar Moment Frozen In Martian Time
  • Spirit Studies Distinctive Rock Layers With Granules And Platy Beds
  • German HRSC Onboard Mars Express Now In Its Third Year







  • Strongest Winds On Earth Would Not Even Be A Breeze On These Planets
  • Gas Giants Jump Into Planet Formation Early

  • Lunar Transient Phenomena
  • Russian Space Agency Irked By Moon Program Debate
  • Moon May Be More Like Earth Than Thought
  • Japan Set To Cancel Delayed Moon Probe Mission

  • GeoEye Next-Generation Earth Imaging Satellite Reaches Major Milestone
  • Chairman Reacts to National Academies' Earth Science and Applications Assessment
  • Egypt Plans First Remote Sensing Satellite
  • Japanese Government Initiates Space-Borne Hyperspectral Payload Program

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement